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Definitions

Let (X , ρ) be a Polish space. Let B(X ) be the space of all
Borel subsets of X and let Bb(X ) (resp. Cb(X )) be the
Banach space of all bounded, measurable (resp. continuous)
functions on X equipped with the supremum norm ‖ · ‖∞.
We denote by Lipb (X ) the space of all bounded Lipschitz
continuous functions on X . By M and M1 we denote the
family of Borel measures such that µ(X ) <∞ for µ ∈M and
µ(X ) = 1 for µ ∈M1.

An operator P∗ :M→M will be called a Markov operator if
it satisfies the following two conditions

positive linearity: P∗(λ1µ1 + λ2µ2) = λ1P∗µ1 + λ2P∗µ2
for λ1, λ2 ≥ 0; µ1, µ2 ∈M;

preservation of the measure: P∗µ(X ) = µ(X ) for µ ∈M.
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Definitions

A Markov operator P∗ is called a Feller operator if there is a
linear operator P : Cb(X )→ Cb(X ) such that∫

X
Pf (x)µ(dx) =

∫
X
f (x)P∗µ(dx)

for any f ∈ Cb(X ) and µ ∈M.
Let P∗ be a Markov operator; a measure µ ∈M is called
invariant if P∗µ = µ. A Markov operator P is called
asymptotically stable if there exists a stationary measure
µ∗ ∈M1 such that

w-lim
n→∞
Pn∗µ = µ∗

for any µ ∈M1.
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Invariant measures for Markov operators

Theorem 1. A. Lasota, J. Yorke, Random Comput. Dynam.
(1994)

Let P∗ :M→M be a Feller operator. Assume that there is a
compact set Y ⊂ X and a measure µ0 ∈M1 such that

lim sup
n→∞

1
n

n∑
k=1

Pk∗µ0(Y ) > 0.

Then there exists an invariant measure µ∗ ∈M1.
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Wasserstein metric

In the space M we introduce the Wasserstein distance

dw (µ, ν) = sup
{∣∣∣∣∫

X
f d(µ− ν)

∣∣∣∣ : ‖f ‖∞ ≤ 1, Lip f ≤ 1
}

for µ, ν ∈M.
A Markov operator will be called nonexpansive if

dw (P∗µ,P∗ν) ≤ dw (µ, ν) for µ, ν ∈M1.
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Stability of Markov operators

Theorem 2. A. Lasota, J. Yorke, Random Comput. Dynam.
(1994)

Let P∗ :M→M be a nonexpansive Markov operator.
Assume that for every ε > 0 there is a Borel set A with
diamA ≤ ε and a number α > 0 such that

lim inf
n→∞

Pn∗µ(A) ≥ α for µ ∈M1.

Then P∗ is asymptotically stable.
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Markov semigroups

Let ((Z (t))t≥0 be a Markov process taking values in X and let
(P t)t≥0 be its transition semigroup.

We shall assume that the semigroup (P t)t≥0 is Feller, i.e.
P t(Cb(X )) ⊂ Cb(X ) and that the Markov family is
stochastically continuous, which implies that:
limt→0+ Ptψ(x) = ψ(x) for all x ∈ X and ψ ∈ Cb(X ).
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Markov semigroups

We say that a transition semigroup (P t)t≥0 has the e-property
at x ∈ X if the family of functions (P tψ)t≥0 is equicontinuous
at x for any bounded and Lipschitz continuous function ψ.
The semigroup (P t)t≥0 has the e-property if the above
condition holds at any x ∈ X .
Let (P t∗)t≥0 be the dual semigroup defined on the space M1

given by the formula

P t∗µ(B) :=

∫
X
P t1Bdµ for B ∈ B(X ).

Recall that µ∗ ∈M1 is invariant for the semigroup (P t)t≥0 (or
the Markov family (Z (t))t≥0 if P t∗µ∗ = µ∗ for all t ≥ 0.
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The set T
For a given T > 0 and µ ∈M1 define

QTµ := T−1
∫ T
0
P s∗µds.

We write QT (x) in the particular case when µ = δx .
The crucial role is played by the set

T :=
{
x ∈ X : the family of measures (Qt(x))t≥0 is tight

}
.

if T 6= ∅, then the semigroup (P t)t≥0 admits an invariant
measure;
if µ∗ is an invariant measure, then suppµ∗ ⊂ T ;
if If x ∈ T , then the sequence (Qt(x))t≥0 weakly
converges to some invariant measure.
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Invariant measures for Markov semigroups

Theorem 3. (A. Lasota and T.S., J. Diff. Eqs 2006)

Let (P t)t≥0 be a Feller semigroup. Assume that there exists a
point z ∈ X such that for every δ > 0

lim sup
T→∞

QT (x ,B(z , δ)) > 0 for some x ∈ X .

If the semigroup (P t)t≥0 has the e-property in z ∈ X , then
z ∈ T . Consequently, (P t)t≥0 admits an invariant measure.
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Uniqueness of an invariant measure for Markov
semigroups

Theorem 4. (T. Komorowski, S. Peszat and T.S., Ann. Prob.
2010)

Assume that (P t)t≥0 has the e–property and that there exists
a point z ∈ X such that for every δ > 0 and every x ∈ X

lim sup
T→∞

QT (x ,B(z , δ)) > 0.

Then (P t)t≥0 admits a unique invariant measure µ∗. Moreover,

w-lim
t→∞
Qtν = µ∗

for any ν ∈M1 that is supported in T .
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Ergodic measures

An invariant measure µ ∈M1 is called ergodic if every
A ∈ B(X ) such that Pt1A = 1A for t ≥ 0 satisfies
µ(A) ∈ {0, 1}.

We shall assume the following concentrating condition:
(C) There exists a compact set K ⊂ X such that for any ε > 0
and every x ∈ X

lim sup
T→+∞

QT (x ,K ε) > 0,

where K ε = {x ∈ X : infy∈K ρ(x , y) < ε}.
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Ergodic measures

If (P t)t≥0 satisfies the e-property and x ∈ T , then by νx we
denote the weak limit of (Qt(x))t≥0.
We may formulate the following result.

Theorem 5. (D. Worm and T.S., ETDS 2012)

If (P t)t≥0 satisfies the e-property and (C), then there exists a
Borel set K0 ⊂ K ∩ T such that

x ∈ supp νx and νx is ergodic for all x ∈ K0,
if x , y ∈ K0 with x 6= y , then νx 6= νy ,

for every ergodic measure µ there is an x ∈ K0 such that
µ = νx .
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Ergodic measures

Now we fix x0 ∈ X . For f : X → R and θ > 0 we define the
local Lipschitz constant

|f |Lip,θ := sup
{
|f (x)− f (y)|

ρ(x , y)
: x 6= y ; x , y ∈ B(x0, θ)

}
.

Proposition 6. (D. Worm and T.S., ETDS 2012)

Let (P t)t≥0 satisfy the e-property and (C). If there are
sequences tn > 0 and δn ↓ 0 and a non-decreasing function
C : R+ → R+, such that for all bounded and Lipschitz
functions and θ > 0

|P tn f |Lip,θ ≤ C (θ)(‖f ‖∞ + δn Lip f ).

Then (P t)t≥0 admits only finitely many ergodic measures.
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Application to Stochastic Equations

We study the Markov process defined by the stochastic
evolution equation

dZ (t) = (AZ (t) + F (Z (t))) dt + RdW (t). (1)

A is the generator of a C0-semigroup S = (S(t))t≥0 on
some real separable Hilbert space X ,

F maps (not necessarily continuously) D(F ) ⊂ X into X ,

R is a bounded linear operator from another Hilbert space
H to X , and

W = (W (t))t≥0 is a cylindrical Wiener process on H
defined on (Ω,F , (Ft)t≥0,P).
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evolution equation

dZ (t) = (AZ (t) + F (Z (t))) dt + RdW (t). (1)

A is the generator of a C0-semigroup S = (S(t))t≥0 on
some real separable Hilbert space X ,

F maps (not necessarily continuously) D(F ) ⊂ X into X ,
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Application to Stochastic Equations

We suppose that for every x ∈ X there is a unique mild
solution Z x = (Z xt )t≥0 of (??) starting at x , and that (??)
defines in that way a Markov family. We assume that for any
x ∈ X , the process Z x is stochastically continuous.
The corresponding transition semigroup is given by

Ptψ(x) = Eψ(Z x(t)),

ψ ∈ Bb(X ), and we assume that it is Feller.
A function Φ: X 7→ [0,+∞) will be called a Lyapunov
function, if it is measurable and

lim
‖x‖X→∞

Φ(x) =∞.
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Applications to SPDE’s

We shall assume that the deterministic equation

dY (t)
dt

= AY (t) + F (Y (t)), Y (0) = x (2)

defines a continuous semi-dynamical system
Y x = (Y x(t), t ≥ 0).
A set K ⊂ X is called a global attractor for Y x if

1) it is invariant under the semi-dynamical system, i.e.
Y x(t) ∈ K for any x ∈ K and t ≥ 0.

2) for any ε,R > 0 there exists T such that
Y x(t) ∈ K + εB(0, 1) for t ≥ T and ‖x‖X ≤ R .
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Applications to SPDE’s

The family (Z x(t))t≥0, x ∈ X , is stochastically stable if for
every ε, R , t > 0

infx∈B(0,R) P (‖Z x(t)− Y x(t)‖X < ε) > 0.
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Applications to SPDE’s

Theorem 5. (T. K., S. P. and T.S. Ann. Prob. 2010)

Assume that:

there exists a global attractor K of the semi-dynamical
system (Y x(t), t ≥ 0) defined by (??);

there exists a certain Lyapunov function Φ such that

sup
t≥0

EΦ(Z x(t)) <∞ for any x ∈ X ,

the family (Z x(t))t≥0, x ∈ X , is stochastically stable, its
transition semigroup has the e-property and⋂

x∈K

⋃
t≥0

Γt(x) 6= ∅, (3)

where Γt(x) = suppP∗t δx
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Applications to SPDE’s

Theorem 5. (continuation)

Then, (Z x(t))t≥0, x ∈ X admits a unique invariant measure
µ∗. Moreover, we have

w-lim
t→∞
Qtµ = µ∗

for any µ ∈M1.
If we additionally assume that the attractor K is a singleton,
then (P t)t≥0 is asymptotically stable, i.e.

w-lim
t→∞
P t∗µ = µ∗

for any µ ∈M1.
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The CLT and LIL

If we assume additionally that the Markov semigroup (Pt)t≥0
corresponding to some Markov process (Z (t))t≥0 is
exponentially convergent, i.e., there exists α > 0 such that for
any Lipschitz function f and x ∈ X there exists a constant
C := C (f , x) > 0 such that

|Ptf (x)−
∫
X
f dµ∗| ≤ Ce−αt ,

where µ∗ is a unique invariant measure for the given
semigroup, then for any bounded Lipschitz function
ϕ : X → R such that

∫
X ϕdµ∗ = 0 we obtain:
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The CLT and LIL

The Central Limit Theorem: For Wx(t) =
∫ t
0 ϕ(Z x(s))ds

we have
Wx(t)√
t

=⇒ W , as t → +∞,

where W is a random variable with normal distribution
N (0,D) and the convergence is understood in law.
The Law of the Iterated Logarithm:

lim sup
t→+∞

Wx(t)√
2t log log t

= D

with probability 1. Of course the above implies that also

lim inf
t→+∞

Wx(t)√
2t log log t

= −D

with probability 1.
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Model of passive tracer

Consider the Navier–Stokes equations (N.S.E.) on a two
dimensional torus T,

∂t~u(t, x) + ~u(t, x) · ∇x~u(t, x) = ∆x~u(t, x)−∇xp(t, x) + ~F (t, x),

∇ · ~u(t, x) = 0,

~u(0, x) = ~u0(x).
(4)

The two dimensional vector field ~u(t, x) and scalar field p(t, x)
over [0,+∞)× T, are called an Eulerian velocity and pressure,
respectively. The forcing ~F (t, x) is assumed to be a Gaussian
white noise in t, homogeneous and sufficiently regular in x
defined over a certain probability space (Ω,F ,P).
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Model of passive tracer

The trajectory of a tracer particle is defined as the solution of
the ordinary differential equation (o.d.e.)

dx(t)
dt

= ~u(t, x(t)), x(0) = x0, (5)

where x0 ∈ R2.
Thanks to well known regularity properties of solutions of
N.S.E ~u(t, x) possesses continuous modification in x for any
t > 0. However, since ~u(t, x) needs not be Lipschitz in x , the
equation might not define x(t), t ≥ 0, as a stochastic process
over (Ω,F ,P), due to possible non-uniqueness of solutions.
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Model of passive tracer

Let x0 ∈ R2. By a solution to (??) we mean any (Ft)-adapted
process x(t), t ≥ 0, with continuous trajectories, such that

x(t) = x0 +

∫ t
0
~u(s, x(s))ds, ∀ t ≥ 0, P-a.s. (6)

In our approach a crucial role is played by the Lagrangian
process

~η(t, x) := ~u(t, x(t) + x), t ≥ 0, x ∈ T

that describes the environment from the vantage point of the
moving particle. It turns out that its rotation in x ,

ω(t, x) = rot ~η(t, x) := ∂2η1(t, x)−∂1η2(t, x), t ≥ 0, x ∈ T,

satisfies a stochastic partial differential equation (s.p.d.e.) that
is similar to the stochastic N.S.E.
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Model of passive tracer

The position x(t) of the particle at time t, can be represented
as an additive functional of the Lagrangian process, i.e.

x(t) =

∫ t
0
ψ∗(ω(s))ds,
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